
Hubs: the Link between Devices and the Host

USB Complete 433

15

Hubs:
the Link between
Devices and the Host
Every USB peripheral must connect to a hub. As Chapter 1 explained, a hub
is an intelligent device that provides attachment points for devices and man-
ages each device’s connection to the bus. Devices that plug directly into a
PC connect to the root hub. Other devices connect to external hubs down-
stream from the root hub.

A hub’s main jobs are managing its devices’ connections and power and
passing traffic to and from the host. Managing the connections includes
helping to get newly attached devices up and communicating and blocking
communications from misbehaving devices so they don’t interfere with
other communications on the bus. Managing power includes providing the
requested bus current to attached devices. The hub’s role in passing traffic to
and from the host depends on the speed of the host, the device, and the

Chapter 15

434 USB Complete

hubs between them. A hub may just repeat what it receives or it may convert
the traffic to a different speed and manage transactions with the device.

This chapter presents essentials about hub communications. You don’t need
to know every detail about hubs in order to design a USB peripheral. Host
applications and device drivers and device firmware don’t have to know or
care how many hubs are between the host and a device. But some under-
standing of what the hub does can help in understanding how devices are
detected and communicate on the bus.

Hub Basics
Each external hub has one port, or attachment point, that connects in the
upstream direction (toward the host) (Figure 15-1). This upstream port may
connect directly to the host’s root hub, or the port may connect to a down-
stream port on another external hub. Each hub also has one or more ports
downstream from the host. Most downstream ports have a connector for
attaching a cable. An exception is a hub that is part of a compound device
whose ports connect to functions embedded in the device. Hubs with one,
two, four, and seven downstream ports are common. A hub may be
self-powered or bus-powered. As Chapter 16 explains, bus-powered hubs are
limited because you can’t attach high-power devices to them.

Figure 15-1: A hub has one upstream port and one or more downstream ports.

Hubs: the Link between Devices and the Host

USB Complete 435

Every external hub has a hub repeater and a hub controller. (Figure 15-2).
The hub repeater is responsible for passing USB traffic between the host’s
root hub or another upstream hub and whatever downstream devices are
attached and enabled. The hub controller manages communications
between the host and the hub repeater. State machines control the hub’s
response to events at the hub repeater and upstream and downstream ports.
(The timing requirements are too strict to be handled by firmware.) A 2.0
hub also has one or more transaction translators and routing logic that
enable low- and full-speed devices to communicate on a high-speed bus.

The host’s root hub is a special case. The host controller performs many of
the functions that the hub repeater and hub controller perform in an exter-
nal hub, so a root hub may contain little more than routing logic and down-
stream ports.

The Hub Repeater
The hub repeater re-transmits, or repeats, the packets it receives, sending
them on their way either upstream or downstream with minimal changes.
The hub repeater also detects when a device is attached and removed, estab-
lishes the connection of a device to the bus, detects bus faults such as
over-current conditions, and manages power to the device.

The hub repeater in a 2.0 hub has two modes of operation depending on the
upstream bus speed. When the hub connects upstream to a full-speed bus
segment, the repeater functions as a low- and full-speed repeater. When the
hub connects upstream to a high-speed bus segment, the repeater functions
as a high-speed repeater. The repeaters in 1.x hubs always function as low-
and full-speed repeaters.

The Low- and Full-speed Repeater

The hub repeater in a 1.x hub handles low- and full-speed traffic. A 2.0 hub
also uses this type of repeater when its upstream port connects to a
full-speed bus. In this case, the 2.0 hub doesn’t send or receive high-speed
traffic but instead functions identically to a 1.x hub.

Chapter 15

436 USB Complete

Figure 15-2: A 2.0 hub contains one or more transaction translators and routing
logic that enable a hub on a high-speed bus to communicate with low- and
full-speed devices. In a 1.x hub, the hub repeater is routed directly to the
downstream ports.

Hubs: the Link between Devices and the Host

USB Complete 437

A 1.x hub repeats all low- and full-speed packets received from the host
(including data that has passed through one or more additional hubs) to all
enabled, full-speed, downstream ports. Enabled ports include all ports with
attached devices that are ready to receive communications from the hub.
Devices with ports that aren’t enabled include devices that the host control-
ler has stopped communicating with due to errors or other problems,
devices in the Suspend state, and devices that aren’t yet ready to communi-
cate because they have just been attached or are in the process of exiting the
Suspend state.

The hub repeater doesn’t translate, examine the contents of, or process the
traffic to or from full-speed ports in any way. The hub repeater just regener-
ates the edges of the signal transitions and passes them on.

Low-speed devices never see full-speed traffic. A 1.x hub repeats only
low-speed packets to low-speed devices. The hub identifies a low-speed
packet by the PRE packet identifier that precedes the packet. The hub
repeats the low-speed packets, and only these packets, to any enabled
low-speed ports. The hub also repeats low-speed packets to its full-speed
downstream ports, because a full-speed port may connect to a hub that in
turn connects to a low-speed device. To give the hubs time to make their
low-speed ports ready to receive data, the host adds a delay of at least four
full-speed bit widths between the PRE packet and the low-speed packet.

Compared to full speed, traffic in a low-speed cable segment varies not only
in speed, but also in edge rate and polarity. The hub nearest to a low-speed
device uses low speed’s edge rate and polarity when communicating with the
device. When communicating upstream, the hub uses full-speed’s faster
edge rate and an inverted polarity compared to low speed. The hub repeater
converts between the edge rates and polarities as needed. Chapter 18 has
more on the signal polarities, and Chapter 19 has more about edge rates.

The High-speed Repeater

A 2.0 hub uses a high-speed repeater when the hub’s upstream port connects
to a high-speed bus segment. When this is the case, the hub sends and
receives all upstream traffic at high speed, even if the traffic is to or from a

Chapter 15

438 USB Complete

low- or full-speed device. The path that traffic takes through a hub with a
high-speed repeater depends on the speeds of the attached devices. Routing
logic in the hub determines whether traffic to or from a downstream port
passes through a transaction translator.

Unlike a low- and full-speed repeater, a high-speed repeater re-clocks
received data to minimize accumulated jitter. In other words, instead of just
repeating received transitions, a high-speed repeater extracts the data and
uses its own local clock to time the transitions when retransmitting. The
edge rate and polarity are unchanged. An elasticity buffer allows for small
differences between the two clock frequencies. When the buffer is half full,
the received data begins to be clocked out.

High-speed devices don’t use the transaction translator. Traffic is routed
from the receiving port on the hub, through the high-speed repeater, to the
hub’s transmitting port.

For traffic to and from low- and full-speed devices, the high-speed repeater
communicates with the transaction translator that manages the transactions
with the devices. Traffic received from upstream is routed to the high-speed
repeater, then passes through the transaction translator, which communi-
cates at the appropriate speed with the downstream ports. In the other direc-
tion, traffic from low- and full-speed devices is routed to the transaction
translator, which processes the received data and takes appropriate action as
described in the next section.

The Transaction Translator
Every 2.0 hub must have a transaction translator to manage communica-
tions with low- and full-speed devices. The transaction translator communi-
cates upstream at high speed but enables 1.x devices to communicate at low
and full speeds in exactly the same way as they do with 1.x hosts. The trans-
action translator stores received data and then forwards the data on toward
its destination at a different speed.

The transaction translator frees bus time by enabling other bus communica-
tions to occur while a device is completing a low- or full-speed transaction.

Hubs: the Link between Devices and the Host

USB Complete 439

Transaction translators can also enable low- and full-speed devices to use
more bandwidth than they would have on a shared 1.x bus.

Sections

The transaction translator contains three sections (Figure 15-3). The
high-speed handler communicates with the host at high speed. The
low/full-speed handler communicates with devices at low and full speeds.
Buffers store data used in transactions with low- and full-speed devices.
Each transaction translator has to have at least four buffers: one for interrupt
and isochronous start-split transactions, one for interrupt and isochronous
complete-split transactions, and two or more for control and bulk transfers.

Managing Split Transactions

When a 2.0 host on a high-speed bus wants to communicate with a low- or
full-speed device, the host initiates a start-split transaction with the 2.0 hub
that is nearest the device and communicating upstream at high speed. One
or more start-split transactions contain the information the hub needs to

Figure 15-3: A transaction translator contains a high-speed handler for
upstream traffic, buffers for storing information in split transactions, and a low-
and full-speed handler for downstream traffic to low- and full-speed devices.

Chapter 15

440 USB Complete

complete the transaction with the device. The transaction translator stores
the information received from the host and completes the start-split transac-
tion with the host.

On completing a start-split transaction, the hub performs the function of a
host controller in carrying out the transaction with the device. The transac-
tion translator initiates the transaction in the token phase, sends data or
stores returned data or status information as needed in the data phase, and
sends or receives a status code as needed in the handshake phase. The hub
uses low or full speed, as appropriate, in its communications with the device.

After the hub has had time to exchange data with the device, in all transac-
tions except isochronous OUTs, the host initiates one or more com-
plete-split transactions to retrieve the information returned by the device
and stored in the transaction translator’s buffer. The hub performs these
transactions at high speed.

Figure 15-4 shows the transactions that make up a split transaction. Table
15-1 compares the structure and contents of transactions with low- and
full-speed devices at different bus speeds.

In explaining how split transactions work, I’ll start with bulk and control
transfers, which don’t have the timing constraints of interrupt and isochro-
nous transfers. In the start-split transaction, the 2.0 host sends the start-split
token packet (SSPLIT), followed by the usual low- or full-speed token
packet, and any data packet destined for the device. The 2.0 hub that is
nearest the device and communicating upstream at high speed returns ACK
or NAK. The host is then free to use the bus for other transactions. The
device knows nothing about the transaction yet.

On returning ACK in a start-split transaction, the hub has two responsibili-
ties. The hub must complete the transaction with the device. And the hub
must continue to handle any other bus traffic received from the host or
other attached devices.

To complete the transaction, the hub converts the packet or packets received
from the host to the appropriate speed, sends them to the device and stores
the data or handshake returned by the device. Depending on the transac-

Hubs: the Link between Devices and the Host

USB Complete 441

tion, the device may return data, a handshake, or nothing. For IN transac-
tions, the hub returns a handshake to the device. To the device, the
transaction has proceeded at the expected low or full speed and is now com-
plete. The device has no knowledge that it’s a split transaction. The host
hasn’t yet received the device’s response.

While the hub is completing the transaction with the device, the host may
initiate other bus traffic that the device’s hub must handle as well. The two
functions are handled by separate hardware modules within the hub. When
the host thinks the hub has had enough time to complete the transaction
with the device, the host begins a complete-split transaction with the hub.

In a complete-split transaction, the host sends a complete-split token packet
(CSPLIT), followed by a low- or full-speed token packet to request the data

Figure 15-4: In a transfer that uses split transactions, the host communicates at
high speed with a 2.0 hub, and the hub communicates at low or full speed with
the device. Isochronous transactions may use multiple start-split or
complete-split transactions.

Chapter 15

442 USB Complete

or status information the hub has received from the device. The hub returns
the information. The transfer is now complete at the host. The host doesn’t
return an ACK to the hub. If the hub doesn’t have the packet ready to send,
the hub returns a NYET status code, and the host retries later. The device
has no knowledge of the complete-split transaction.

In split transactions in interrupt and isochronous transfers, the process is
similar, but with more strictly defined timing. The goal is to transfer data to
the host as soon as possible after the device has data available to send, and to
transfer data to the device just before the device is ready to receive new data.
To achieve this timing, isochronous transactions with large packets use mul-
tiple start splits or complete splits, transferring a portion of the data in each.

Unlike with bulk and control transfers, the start-split transactions in inter-
rupt and isochronous transfers have no handshake phase, just the start-split
token followed by an IN, OUT, or Setup token and data for OUT or Setup
transactions.

Table 15-1: When a low- or full-speed device has a transaction on a high-speed
bus, the host uses start-split (SSPLIT) and complete-split (CSPLIT) transactions
with the 2.0 hub nearest the device. The hub is responsible for completing the
transaction at low or full speed and reporting back to the host.
Bus Speed Transaction

Type
Transaction Phase

Token Data Handshake

Low/Full-speed
communications
with the device

Setup, OUT PRE if low speed,
LS/FS token

PRE if low speed,
data

status (except for
isochronous)

IN PRE if low speed,
LS/FS token

data or status PRE if low speed,
status (except for
isochronous)

High-speed com-
munications
between the 2.0
hub and host in
transactions with
a low- or
full-speed device

Setup, OUT
(isochronous
OUT has no
CSPLIT
transaction)

SSPLIT,
LS/FS token

data status (bulk and
control only)

CSPLIT,
LS/FS token

– status

IN SSPLIT,
LS/FS token

– status (bulk and
control only)

CSPLIT,
LS/FS token)

data or status –

Hubs: the Link between Devices and the Host

USB Complete 443

In an interrupt transaction, the hub schedules the start split in the microf-
rame just before the earliest time that the hub is expected to begin the trans-
action with the device. For example, assume that the microframes in a frame
are numbered in sequence, Y0 through Y7. If the start split is in Y0, the
transaction with the device may occur as early as Y1. The device may have
data or a handshake response to return to the host as early as Y2. The results
of previous transactions and bit stuffing can affect when the transaction
with the device actually occurs, so the host schedules time for three com-
plete-split transactions, in Y2, Y3, and Y4. If the hub doesn’t yet have the
information to return in a complete split, the hub returns a NYET status
code and the host retries.

Full-speed isochronous transactions can transfer up to 1023 bytes. To ensure
that the data transfers just in time, or as soon as the device has data to send
or is ready to receive data, transactions with large packets use multiple start
splits or complete splits, with up to 188 bytes of data in each. This is the
maximum amount of full-speed data that fits in a microframe. A single
transaction’s data can require up to eight start-split or complete-split trans-
actions.

In an isochronous IN transaction, the host schedules complete-split transac-
tions in every microframe where the host expects that the device will have at
least a portion of the data to return. Requesting the data in smaller chunks
ensures that the host receives the data as quickly as possible. The host
doesn’t have to wait for all of the data to transfer from the device at full
speed before beginning to retrieve the data.

In an isochronous OUT transaction, the host sends the data in one or more
start-split transactions. The host schedules the transactions so the hub’s
buffer will never be empty but will contain as few bytes as possible. Each
SPLIT packet contains bits to indicate the data’s position in the low- or
full-speed data packet (beginning, middle, end, or all). There is no com-
plete-split transaction.

Chapter 15

444 USB Complete

Bandwidth Use of Low- and Full-speed Devices

Because a 2.0 hub acts as a host controller in managing transactions, low-
and full-speed devices share 1.x bandwidth only with devices that use the
same transaction translator. So if two full-speed devices connect to their own
2.0 hubs on a high-speed bus, each device can use all of the full-speed band-
width it wants. When the hub converts to high speed, the 1.x communica-
tions will use little of the high-speed bandwidth.

However, for bulk transactions, the extra transaction with the host in each
split transaction can slow the rate of data transfer with a full-speed device on
a busy bus that is also carrying high-speed bulk traffic.

Many hubs provide one transaction translator for all ports, but a single hub
can also have a transaction translator for each port that connects to a low- or
full-speed device.

The Hub Controller
The hub controller manages communications between the host and the
hub. The communications include enumeration along with other commu-
nications and actions due to events at downstream ports.

As it does for all devices, the host enumerates a newly detected hub to find
out its abilities. The hub descriptor retrieved during enumeration tells the
host how many ports the hub has. After enumerating the hub, the host
requests the hub to report whether there are any devices attached. If so, the
host enumerates these as well.

The host finds out if a device is attached to a port by sending the hub-class
request Get_Port_Status. This is similar to a Get_Status request, but sent to
a hub with a port number in the Index field. The hub returns two 16-bit
values that indicate whether a device is attached as well as other informa-
tion, such as whether the device is low power or in the Suspend state.

The hub controller is also responsible for disabling any port that was respon-
sible for loss of bus activity or babble. Loss of bus activity occurs when a
packet doesn’t end with the expected End-of-Packet signal. Babble occurs
when a device continues to transmit beyond the End-of-Packet signal.

Hubs: the Link between Devices and the Host

USB Complete 445

In addition to Endpoint 0, which all devices must have for control transfers,
each hub must have a Status Change endpoint configured for interrupt IN
transfers. The host polls this endpoint to find out if there have been any
changes at the hub. On each poll, the hub controller returns either a NAK if
there have been no changes, or data that indicates a specific port or the hub
itself as the source of the change. If there is a change, the host sends requests
to find out more about the change and to take whatever action is needed.
For example, if the hub reports the attachment of a new device, the host
attempts to enumerate it.

Speed
An external 2.0 hub’s downstream ports must support all three speeds. In
the upstream direction, if a 2.0 hub’s upstream segment is high speed, the
hub communicates at high speed. Otherwise, the hub communicates
upstream at low and full speeds.

A 1.x hub’s upstream port must support low- and full-speed communica-
tions. All downstream ports with connectors must support both low- and
full-speed communications. 1.x hubs never support high speed.

Filtering Traffic according to Speed

Low-speed devices aren’t capable of receiving full-speed data, so hubs don’t
repeat full-speed traffic to low-speed devices. This behavior is necessary
because a low-speed device would try to interpret the full-speed traffic as
low-speed data and might even mistakenly see what looks like valid data.
Full- or high-speed data on a low-speed cable could also cause problems due
to radiated electromagnetic interference (EMI). In the other direction, hubs
receive and repeat any low-speed data upstream.

Low- and full-speed devices aren’t capable of receiving high-speed data, so
2.0 hubs don’t repeat high-speed traffic to these devices, including 1.x hubs.

Detecting Device Speed

On attachment, every device must support either low or full speed. A hub
detects whether an attached device is low or full speed by detecting which

Chapter 15

446 USB Complete

signal line is more positive on an idle line. Figure 15-5 illustrates. As Chap-
ter 4 explained, the hub has a pull-down resistor of 14.25 to 24.8 kilohms
on each of the port’s two signal lines, D+ and D-. A newly attached device
has a pull-up resistor of 900 to 1575 ohms on either D+ for a full-speed
device or D- for a low-speed device. When a device is attached to a port, the
line with the pull-up is more positive than the hub’s logic-high input thresh-
old. The hub detects the voltage, assumes a device is attached, and detects
the speed by which line is pulled up.

After detecting a full-speed device, a 2.0 hub determines whether the device
supports high speed by using the high-speed detection handshake. The
handshake occurs during the Reset state that the hub initiates during enu-

Figure 15-5: The device’s port has a stronger pull-up than the hub’s. The
location of the pull-up tells the hub whether the device is low or full speed.
High-speed devices are full speed at attachment.

Hubs: the Link between Devices and the Host

USB Complete 447

meration. If the handshake succeeds, the device removes its pull-up and
communications are at high speed. A 1.x hub ignores the attempt to hand-
shake, and the failure of the handshake informs the device that it must use
full speed. Chapter 18 has more details about the handshake.

Maintaing an Idle Bus
Start-of-Frame packets keep full- and high-speed devices from entering the
Suspend state on an otherwise idle bus. When there is no data on a
full-speed bus, the host continues to send a Start-of-Frame packet once per
frame, and all hubs pass these packets on to their full-speed devices. When
there is no data on a high-speed bus, the host continues to send a
Start-of-Frame packet once per microframe, and all hubs pass these packets
on to their high-speed devices. A full-speed device that connects to a 2.0
hub that communicates upstream at high speed will also receive a
Start-of-Frame once per frame.

Low-speed devices don’t see the Start-of-Frame packets. Instead, at least
once per frame, hubs must send their low-speed devices a low-speed
End-of-Packet (EOP) signal (defined in Chapter 18). This signal functions
as a keep-alive signal that keeps a device from entering the Suspend state on
a bus with no low-speed activity. A host can also request a hub to suspend
the bus at a single port. Chapter 16 has more on how hubs manage the Sus-
pend state.

How Many Hubs in Series?
USB was designed for connecting to peripherals over short to moderate dis-
tances. But that hasn’t stopped users from wondering just how far a USB
peripheral can be from its host.

The USB 2.0 specification doesn’t give a maximum length for cable seg-
ments, but the maximum allowed propagation delay limits the length to
about 5 meters for full and high speed and 3 meters for low speed. You can
increase the distance between a device and its host by using a series of hubs,
each with a 5-meter cable.

Chapter 15

448 USB Complete

The number of hubs you can connect in series is limited by the electrical
properties of the hubs and cables and the resulting delays in propagating sig-
nals along the cable and through a hub. The limit is five hubs in series, with
the hubs and the final device each using a 5-meter cable. The result is a
device that is 30 meters from its host. If the device is low speed, the limit is
28 meters because the device’s cable can be no more than 3 meters. Chapter
19 has more about extending the distance between a USB device and its host
beyond these limits.

The Hub Class
Hubs are members of the Hub class, which is the only class defined in the
main USB specification.

Hub Descriptors
A 1.x hub has a series of five descriptors: device, hub class, configuration,
interface, and endpoint. A 2.0 hub has more descriptors because it must
support all speeds and because the hub may offer a choice of using one or
multiple transaction translators.

A 2.0 hub’s descriptors include the device_qualifier descriptor and the
other_speed_configuration_descriptor required for all high-speed-capable
devices. The device_qualifier descriptor contains an alternate value for
bDeviceProtocol in the device descriptor. The hub uses the alternate value
when it switches between high and full speeds.

The other_speed_configuration_descriptor specifies the number of inter-
faces supported by the configuration not currently in use and is followed by
the subordinate descriptors for that configuration. A configuration that sup-
ports multiple transaction translators has two interface descriptors: one for
use with a single transaction translator and an alternate setting for use with
multiple transaction translators. The bInterfaceProtocal field specifies
whether the interface setting supports one or multiple transaction transla-
tors.

Hubs: the Link between Devices and the Host

USB Complete 449

Hub Values for the Standard Descriptors

The USB specification assigns class-specific values for some parameters in a
hub’s device, and interface descriptors. The specification also defines the
endpoint descriptor for the hub’s status-change endpoint:

The device descriptor has these values:

bDeviceClass: HUB_CLASSCODE (09h).
bDeviceSubClass: 0.
bDeviceProtocol: 0 for low/full speed, 1 for high speed when the
hub supports a single transaction translator, 2 for high speed when
the hub supports multiple transaction translators.

These fields also apply to the Device_Qualifier_Descriptor in 2.0 hubs.

The interface descriptor has these values:

bNumEndpoints: 1.
bInterfaceClass: HUB_CLASSCODE (09h).
bInterfaceSubClass: 0.
bInterfaceProtocol: 0 for a low/full speed hub or a high-speed hub
with a single transaction translator. For a hub that supports single
and multiple transaction translators, 1 indicates a single transaction
translator, and 2 indicates multiple transaction translators.

The endpoint descriptor for the status change endpoint has these values:

bEndpointAddress: implementation-dependent, with bit 7 (direc-
tion) = IN (01h).
wMaxPacketSize: implementation-dependent.
bmAttributes: Transfer Type = Interrupt.
bInterval: FFh for full speed, 0Ch for high speed.

The Hub Descriptor

Each hub must have a hub-class descriptor that contains the following fields:

Identifying the Descriptor

bDescLength. The number of bytes in the descriptor.

bDescriptorType. Hub Descriptor, 29h.

Chapter 15

450 USB Complete

Hub Description

bNbrPorts. The number of downstream ports the hub supports.

wHubCharacteristics:

Bits 1 and 0 specify the power-switching mode. 00=Ganged; all ports are
powered together. 01=Ports are powered individually. 1X: used only on 1.0
hubs with no power switching.

Bit 2 indicates whether the hub is part of a compound device (1) or not (0).

Bits 4 and 3 are the Overcurrent Protection mode. 00 = Global protection
and reporting. 01=Protection and reporting for each port. 1X = No protec-
tion and reporting (for bus-powered hubs only).

Bits 6 and 5 are the Transaction Translator Think Time. These bits indicate
the maximum number of full-speed bit times required between transactions
on a low- or full-speed downstream bus. 00 = 8; 01 = 16; 10 = 24; 11 = 32.
Applies to 2.0 hubs only.

Bit 7 indicates whether the hub supports Port Indicators (1) or not (0).
Applies to 2.0 hubs only.

Bits 8 through 15 are reserved.

bPwrOn2PwrGood. The maximum delay between beginning the
power-on sequence on a port and when power is available on the port. The
value is in units of 2 milliseconds. (Set to 100 for a 200-millisecond delay.)

bHubContrCurrent. The maximum current required by the hub control-
ler’s electronics only, in milliamperes.

DeviceRemovable. Indicates whether the device(s) attached to the hub’s
ports are removable (0) or not (1). The number of bits in this value equals
the number of ports on the hub + 1. Bit 0 is reserved. Bit 1 is for Port 1, bit
2 is for Port 2, and so on up.

PortPowerCtrlMask. All bits should be 1. This field is only for compatibil-
ity with 1.0 software. Each port has one bit, and the field should be padded
with additional 1s so that the field’s size in bits is a multiple of 8.

Hubs: the Link between Devices and the Host

USB Complete 451

Table 15-2: The 2.0 hub class has 12 class-specific requests, while the 1.x hub
class has 9. Many are hub-specific variants of USB’s standard requests.
Request USB

Versions
bRequest Data

source
wValue wIndex Data

Length
(bytes)
(Data
stage)

Data
(in the
Data
stage)

Clear Hub
Feature

all Clear_
Feature

no Data
stage

feature 0 – –

Clear Port
Feature

all Clear_
Feature

no Data
stage

feature port – –

Clear TT
Buffer

2.0 only Clear_TT
_Buffer

no Data
stage

device
address,
endpoint #

TT_port – –

Get Bus
State

1.x only Get_State Hub 0 port 1 per-port
bus state

Get Hub
Descriptor

all Get_
Descriptor

Hub descriptor
type &
index

0 or
language
ID

descriptor
length

descriptor

Get Hub Sta-
tus

all Get_
Status

Hub 0 0 4 hub status
and
change
indicators

Get Port
Status

all Get_
Status

Hub 0 port 4 port
status and
change
indicators

Get TT State 2.0 only Get_TT
State

hub TT flags port TT state,
length

TT state

Reset TT 2.0 only Reset_TT no Data
stage

0 port – –

Set Hub
Descriptor
(optional)

all Set_
Descriptor

host descriptor
type and
index

0 or
language
ID

descriptor
length

descriptor
length

Set Hub
Feature

all Set_
Feature

no Data
stage

feature 0 – –

Set Port
Feature

all Set_
Feature

no Data
stage

feature port – –

Stop TT 2.0 only Stop_TT no Data
stage

0 port – –

Chapter 15

452 USB Complete

Hub-class Requests
All hubs accept or return data for seven of the USB’s eleven standard
requests. Some 2.0 hubs support an additional request. Of the other stan-
dard requests, one is optional and the other two are undefined for hubs.
Like all devices, hubs must return STALL for unsupported requests.

Hubs respond in the standard way to Clear_Feature, Get_Configuration,
Get_Descriptor, Get_Status, Set_Address, Set_Configuration, and
Set_Feature requests. Set_Descriptor is optional and should return STALL if
not supported. Only 2.0 hubs that support multiple transaction translators
support Get_Interface and Set_Interface. A hub can’t have an isochronous
endpoint, so Synch_Frame is undefined for hubs.

The hub class defines eight hub-specific requests that build on the standard
requests with hub-specific values. For example, a Get_Status request
directed to a hub with Index = 0 causes the hub to return a value in a Data
packet indicating whether the hub is using an external power supply and
whether an over-current condition exists.

Table 15-2 shows the hub-specific requests. One request from the 1.x speci-
fication, Get_Bus_State, isn’t included in the 2.0 spec. This request enables
the host to read the states of D+ and D- at a specified port on the hub.

The host uses many of the hub-specific requests to monitor and control the
status of the hub and its ports. Get_Hub_Status reads status bits in a hub.
Set_Hub_Feature and Clear_Hub_Feature set and clear status bits in a hub.
Table 15-3 shows the bits and their meanings. In a similar way,
Get_Port_Status, Set_Port_Feature, and Clear_Port_Feature enable the host
to read and control status bits for a selected port in a hub. Table 15-4 shows
the bits and their meanings.

In 2.0 hubs, Set_Port_Feature can place a port in one of five Test Modes.
Chapter 18 has more about these modes.

The four new requests in the 2.0 spec all relate to monitoring and control-
ling the transaction translator (TT). The requests enable the host to clear a
buffer in the TT, stop the TT, retrieve the state of a stopped TT using a ven-
dor-specific format, and restart the TT by resetting it.

Hubs: the Link between Devices and the Host

USB Complete 453

Port Indicators
The USB 2.0 specification defines optional indicators to indicate port status
to the user. Many hubs have status LEDs. The specification assigns standard
meanings to the LEDs’ colors and blinking properties. Bit 7 in the wHub-
Characteristics field in the hub descriptor indicates whether a hub has port
indicators.

Each downstream port on a hub can have an indicator, which can be either a
single bi-color green/amber LED or a separate LED for each color. The
indicator tells the state of the hub’s port, not the attached device. These are
the meanings of the indicators to the user:

Green: fully operational
Amber: error condition
Blinking off/green: software attention required
Blinking off/amber: hardware attention required
Off: not operational

Table 15-3: The host can monitor and control Status bits in a hub using
Get_Hub_Status, Set_Hub_Feature, and Clear_Hub_Feature.
Field Bit Status Indicator Meaning (0 state/1 state)

Hub Status 0 HUB_LOCAL_POWER Local power supply is good/not active.

1 HUB_OVER_CURRENT An over-current condition exists/does not
exist.

2-15 reserved Returns 0 when read.

Hub Change 0 C_HUB_LOCAL_POWER Local power status has not changed/
changed.

1 C_HUB_OVER_CURRENT Over-current status has not changed/
changed.

2-15 reserved Returns 0 when read.

Chapter 15

454 USB Complete

Table 15-4: The host can monitor and control Status bits at a port using
Get_Port_Status, Set_Port_Feature, and Clear_Port_Feature.
Field Bit Status Indicator Meaning (0 state/1 state)

Port Status 0 PORT_CONNECTION A device is not present/present.

1 PORT_ENABLE The port is disabled/enabled.

2 PORT_SUSPEND The port is not/is in the Suspend state.

3 PORT_OVERCURRENT An over-current condition exists/does not
exist.

4 PORT_RESET The hub is not/is asserting Reset at the
port.

5-7 reserved Returns 0 when read.

8 PORT_POWER The port is/is not in the Powered Off
state.

9 PORT_LOW_SPEED The attached device is full or high
speed/low speed.

10 PORT_HIGH_SPEED The attached device is full speed/high
speed. (2.0 hubs only)

11 PORT_TEST The port is not/is in the Port Test mode.
(2.0 hubs only)

12 PORT_INDICATOR Port indicator displays default/software
controlled colors. (2.0 hubs only)

13-15 reserved Returns 0 when read.

Port Status
Change

0 C_PORT_CONNECTION Connect status has not changed/changed.

1 C_PORT_ENABLE A Port Error condition does not/does
exist.

2 C_PORT_SUSPEND Resume signaling is not/is complete.

3 C_PORT_OVERCURRENT The over-current condition has not/has
changed.

4 C_PORT_RESET Reset processing is not/is complete.

5-15 reserved Returns 0 when read.

